Statins induce mammalian target of rapamycin (mTOR)-mediated inhibition of Akt signaling and sensitize p53-deficient cells to cytostatic drugs.
نویسندگان
چکیده
Cholesterol-lowering statins have been shown to have anticancer effects in different models and sensitize human tumor cells to cytostatic drugs. We have investigated the effect of statins on Akt/protein kinase B signaling and the sensitizing effect of cytostatic drugs. It was found that insulin- and cytostatic drug-induced Akt phosphorylation and nuclear translocation was inhibited by pravastatin and atorvastatin in HepG2, A549, and H1299 cells in an mTOR-dependent manner. Statins also induced mTOR-dependent phosphorylation of insulin receptor substrate 1. In p53 wild-type cells (HepG2 and A549), pretreatment with statins did not sensitize cells to etoposide in concentrations which induced p53 stabilization. In line with our previous data, statins were found to attenuate the etoposide-induced p53 response. However, silencing p53 by RNA interference rescued the sensitizing effect. We also show that in a p53-deficient cell line (H1299), pretreatment with atorvastatin sensitized cells to etoposide, doxorubicin, and 5-fluorouracil and increased the level of apoptosis. Taken together, these data suggest that a mTOR-dependent, statin-induced inhibition of Akt phosphorylation and nuclear translocation sensitizes cells to cytostatic drugs. However, this effect can be counteracted in p53 competent cells by the ability of statins to destabilize p53.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملRapamycin Inhibits Expansion of Cord Blood Derived NK and T Cell
Background: The mammalian target of rapamycin (mTOR) is important in hematopoiesis. Despite the central role of mTOR in regulating the differentiation of immune cells, the effect of mTOR function on cord blood mononuclear cells is yet to be defined. Objectives: To evaluate the effect of mTOR inhibition, using rapamycin on the proliferation and apoptosis of cord blood mononuclear cells, as well ...
متن کاملP162: Emerging Perspectives on Mtor-Associated Inflammation in Neurodegenerative Diseases
Inflammatory processes have been shown to be involved in development and progression of neurodegenerative diseases. Mammalian target of rapamycin (mTOR) involves in various cellular processes including autophagy, apoptosis and energy metabolism. Recently, studies have been shown an association between mTOR pathway and inflammation, supporting the role of the pathway in the pathogenesis of infla...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملMechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis.
Mammalian target of rapamycin (mTOR) inhibitors curtail cap-dependent translation. However, they can also induce post-translational modifications of proteins. We assessed both effects to understand the mechanism by which mTOR inhibitors like rapamycin sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Sensitization was achieved in multiple myeloma cells irrespective of their P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2006